The finalize_* functions take a list or tibble of tuning parameter values and
update objects with those values.
Usage
finalize_model(x, parameters)
finalize_recipe(x, parameters)
finalize_workflow(x, parameters)
finalize_tailor(x, parameters)Arguments
- x
A recipe, parsnip model specification, tailor postprocessor, or workflow.
- parameters
A list or 1-row tibble of parameter values. Note that the column names of the tibble should be the
idfields attached totune(). For example, in theExamplessection below, the model hastune("K"). In this case, the parameter tibble should be "K" and not "neighbors".
Examples
data("example_ames_knn")
library(parsnip)
knn_model <-
nearest_neighbor(
mode = "regression",
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()
) |>
set_engine("kknn")
lowest_rmse <- select_best(ames_grid_search, metric = "rmse")
lowest_rmse
#> # A tibble: 1 × 6
#> K weight_func dist_power lon lat .config
#> <int> <chr> <dbl> <int> <int> <chr>
#> 1 33 triweight 0.511 10 3 pre08_mod07_post0
knn_model
#> K-Nearest Neighbor Model Specification (regression)
#>
#> Main Arguments:
#> neighbors = tune("K")
#> weight_func = tune()
#> dist_power = tune()
#>
#> Computational engine: kknn
#>
finalize_model(knn_model, lowest_rmse)
#> K-Nearest Neighbor Model Specification (regression)
#>
#> Main Arguments:
#> neighbors = 33
#> weight_func = triweight
#> dist_power = 0.511191629664972
#>
#> Computational engine: kknn
#>
