
Package index
- 
          
tune_grid() - Model tuning via grid search
 
- 
          
tune_bayes() - Bayesian optimization of model parameters.
 
- 
          
expo_decay() - Exponential decay function
 
- 
          
prob_improve()exp_improve()conf_bound() - Acquisition function for scoring parameter combinations
 
- 
          
fit_resamples() - Fit multiple models via resampling
 
- 
          
control_grid()control_resamples()new_backend_options() - Control aspects of the grid search process
 
- 
          
control_bayes() - Control aspects of the Bayesian search process
 
- 
          
parallelism - Support for parallel processing in tune
 
- 
          
fit_best() - Fit a model to the numerically optimal configuration
 
- 
          
last_fit() - Fit the final best model to the training set and evaluate the test set
 
- 
          
finalize_model()finalize_recipe()finalize_workflow()finalize_tailor() - Splice final parameters into objects
 
- 
          
control_last_fit() - Control aspects of the last fit process
 
- 
          
collect_predictions()collect_metrics()collect_notes()collect_extracts() - Obtain and format results produced by tuning functions
 
- 
          
show_notes() - Display distinct errors from tune objects
 
- 
          
show_best()select_best()select_by_pct_loss()select_by_one_std_err() - Investigate best tuning parameters
 
- 
          
filter_parameters() - Remove some tuning parameter results
 
- 
          
autoplot(<tune_results>) - Plot tuning search results
 
- 
          
coord_obs_pred() - Use same scale for plots of observed vs predicted values
 
- 
          
conf_mat_resampled() - Compute average confusion matrix across resamples
 
- 
          
extract_workflow(<last_fit>)extract_workflow(<tune_results>)extract_spec_parsnip(<tune_results>)extract_recipe(<tune_results>)extract_fit_parsnip(<tune_results>)extract_fit_engine(<tune_results>)extract_mold(<tune_results>)extract_preprocessor(<tune_results>) - Extract elements of 
tuneobjects 
- 
          
int_pctl(<tune_results>) - Bootstrap confidence intervals for performance metrics
 
- 
          
compute_metrics() - Calculate and format metrics from tuning functions
 
- 
          
augment(<tune_results>)augment(<resample_results>)augment(<last_fit>) - Augment data with holdout predictions
 
- 
          
example_ames_knnames_wflowames_grid_searchames_iter_search - Example Analysis of Ames Housing Data
 
- 
          
merge(<recipe>)merge(<model_spec>) - Merge parameter grid values into objects
 
- 
          
message_wrap() - Write a message that respects the line width
 
- 
          
.use_case_weights_with_yardstick() - Determine if case weights should be passed on to yardstick
 
- 
          
.stash_last_result() - Save most recent results to search path