
Package index
-
tune_grid() - Model tuning via grid search
-
tune_bayes() - Bayesian optimization of model parameters.
-
expo_decay() - Exponential decay function
-
prob_improve()exp_improve()conf_bound() - Acquisition function for scoring parameter combinations
-
fit_resamples() - Fit multiple models via resampling
-
control_grid()control_resamples()new_backend_options() - Control aspects of the grid search process
-
control_bayes() - Control aspects of the Bayesian search process
-
parallelism - Support for parallel processing in tune
-
fit_best() - Fit a model to the numerically optimal configuration
-
last_fit() - Fit the final best model to the training set and evaluate the test set
-
finalize_model()finalize_recipe()finalize_workflow()finalize_tailor() - Splice final parameters into objects
-
control_last_fit() - Control aspects of the last fit process
-
collect_predictions()collect_metrics()collect_notes()collect_extracts() - Obtain and format results produced by tuning functions
-
show_notes() - Display distinct errors from tune objects
-
show_best()select_best()select_by_pct_loss()select_by_one_std_err() - Investigate best tuning parameters
-
filter_parameters() - Remove some tuning parameter results
-
autoplot(<tune_results>) - Plot tuning search results
-
coord_obs_pred() - Use same scale for plots of observed vs predicted values
-
conf_mat_resampled() - Compute average confusion matrix across resamples
-
extract_workflow(<last_fit>)extract_workflow(<tune_results>)extract_spec_parsnip(<tune_results>)extract_recipe(<tune_results>)extract_fit_parsnip(<tune_results>)extract_fit_engine(<tune_results>)extract_mold(<tune_results>)extract_preprocessor(<tune_results>) - Extract elements of
tuneobjects
-
extract_resample_weights() - Extract resample weights from rset or tuning objects
-
int_pctl(<tune_results>) - Bootstrap confidence intervals for performance metrics
-
compute_metrics() - Calculate and format metrics from tuning functions
-
augment(<tune_results>)augment(<resample_results>)augment(<last_fit>) - Augment data with holdout predictions
-
example_ames_knnames_wflowames_grid_searchames_iter_search - Example Analysis of Ames Housing Data
-
add_resample_weights() - Add resample weights to an rset object
-
calculate_resample_weights() - Calculate resample weights from resample sizes
-
merge(<recipe>)merge(<model_spec>) - Merge parameter grid values into objects
-
message_wrap() - Write a message that respects the line width
-
.use_case_weights_with_yardstick() - Determine if case weights should be passed on to yardstick
-
.stash_last_result() - Save most recent results to search path